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Abstract

A common way to form scores from multiple-item scales is to sum responses of all items. Though sum scoring is often contrasted
with factor analysis as a competing method, we review how factor analysis and sum scoring both fall under the larger umbrella of
latent variable models, with sum scoring being a constrained version of a factor analysis. Despite similarities, reporting of
psychometric properties for sum scored or factor analyzed scales are quite different. Further, if researchers use factor analysis
to validate a scale but subsequently sum score the scale, this employs a model that differs from validation model. By framing sum
scoring within a latent variable framework, our goal is to raise awareness that (a) sum scoring requires rather strict constraints, (b)
imposing these constraints requires the same type of justification as any other latent variable model, and (c¢) sum scoring
corresponds to a statistical model and is not a model-free arithmetic calculation. We discuss how unjustified sum scoring can
have adverse effects on validity, reliability, and qualitative classification from sum score cut-offs. We also discuss considerations
for how to use scale scores in subsequent analyses and how these choices can alter conclusions. The general goal is to encourage
researchers to more critically evaluate how they obtain, justify, and use multiple-item scale scores.

Keywords Psychometrics - Scales - Factor analysis - Scale scores

Thinking twice about sum scores

In psychological research, variables of interest frequently
are not directly measurable (e.g., Joreskog & Sorbom,
1979). With constructs like motivation, mathematics abili-
ty, or anxiety, direct measures abate and the construct is
instead captured via a set of items from which a single
score (or small number of sub-scores) is calculated.
Because these scales are not direct measures of the attri-
bute (i.e., researchers cannot hold up a ruler to evaluate
one’s motivation), there is some ambiguity over how to
create scores from these items. Such choices are not trivial,
and the flexibility possessed by the researcher can lead to
scores that look quite different, even if scores materialize
from the same data (e.g., Steegen, Tuerlinckx, Gelman, &
Vanpaemel, 2016). Variables like scale scores often serve
as the foundational unit of statistical analyses and analyses
are only as trustworthy as the variables they contain. For
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this reason, decisions about scoring have been considered
an underemphasized source of replicability issues (Flake &
Fried, 2019; Fried & Flake, 2018).

Several studies have reviewed the literature to inspect how
researchers report the psychometric properties of the scales
used in their studies and the rigor that accompanies scales
tends to be scant (Barry et al., 2014; Crutzen & Peters,
2017; Flake, Pek, & Hehman, 2017). For instance, Crutzen
and Peters (2017) report that while nearly all health psychol-
ogy studies in their review report some measure of reliability
to accompany scale scores, less than 3% of studies reported
information about the validity of their scale — whether the
scale is measuring what it was intended to measure — even
though evidence for the internal structure of the scale is often
recommended as a key component for best practices in scale
development (e.g., Gerbing & Anderson, 1988). Assessment
of internal structure is commonly done with latent variable
models like factor analysis, which explore whether treating
items as aspects of the same construct is supported empirically
(Furr, 2011; Ziegler & Hagemann, 2015). However, as noted
by Bauer and Curran (2015), it is much more common in
psychology to score scales by sum scoring whereby the re-
searchers simply adds (or averages) responses from multiple-
item scales to create scores for variables that are not directly
measurable rather than by performing a latent variable
analysis. Flake et al. (2017) quantify this claim by
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reporting that 21% of reviewed studies used an
established measure presented evidence of internal struc-
ture (37 out of 177 studies). Furthermore, just 2% of
author-developed scales reported evidence of internal
structure (three out of 124). Combined, only 13% of
studies provided evidence of validity based on the in-
ternal structure (40 out of 301 studies); an important
source of evidence for multi-item scales (Standards for
Educational and Psychological Assessment, 2014).

As we will cover in this paper, sum scoring should not be
considered an alternative to latent variable models but rather
that sum scoring can be represented as a latent variable
model, albeit a highly constrained version. We argue that
sum scoring and latent variable models should be reported
identically with similar evidence thresholds. We contend that
justification for sum scoring and reporting of supporting evi-
dence is often lacking because the sum scoring approach ap-
pears arithmetic and model-free when, in fact, it falls under the
umbrella of latent variable models. Our ultimate goal is to
convince researchers that scoring scales — by any method —
is a statistical procedure that requires evidence and justifica-
tion. Because variables serve as the foundational unit of sta-
tistical analyses, it is imperative that both consumers and pro-
ducers of research are able to trust that variables created from
multiple-item scales represent their intended constructs prior
to performing any statistical analyses and drawing conclu-
sions with those variables.

Outline and structure

To justify these claims, we will present evidence in seven
sections. In the first section, we start by showing how sum
scoring can be represented as a latent variable model. In the
second section, we then show how the latent variable model
corresponding to sum scoring is a constrained form of more
general psychometric models. In the third section, we discuss
how applying constraints to psychometric models when inap-
propriate can affect the reliability of scores, classification into
qualitative groups from scores, and can alter the internal struc-
ture and dimensionality of the scale. Similarly, we demon-
strate how validation studies from more general models can-
not be used to support use of the constrained model that rep-
resents sum scoring. We emphasize this last point to engage
readers who believe that using a previously validated scale
alleviates the need to use a latent variable model. After
discussing these differences, the fourth section discuss con-
texts when constraints are justified and when they may be
detrimental. The fifth section discusses considerations when
using scale scores in subsequent analyses including factor
indeterminacy, scoring methods, and simultaneous versus
multistage approaches. The sixth section includes an illustra-
tive example to show that different scoring choices can lead to
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different conclusions, even when the correlation between sum
scores and factor scores is near 1. We end the manuscript with
a discussion of more nuanced practical issues that complicate
scale scoring.

These tenets may be known within the statistics and psy-
chometric communities, but examination of empirical studies
within any subfield of psychology will reveal widespread use
of sum scoring without requisite justification. This would
seem to indicate that either (a) this information has not trans-
ferred from the statistical and psychometric literature to em-
pirical researchers or (b) that this information is not driving
how analyses are conducted in empirical studies. Therefore,
the broader goal of this paper is to follow suggestions from
Sharpe (2013), which calls for an increase in papers that
bridge knowledge from the statistical and psychometric com-
munity to researchers who apply these methods to their em-
pirical data investigating psychological phenomenon. As a
result, this paper does not contain any methodological inno-
vations, but rather attempts to provide information that is use-
ful to empirical researchers while refraining from presenting
technical detail that may have previously been a barrier to
wider dissemination. As such, this paper is intended to serve
as a starting point for readers to realize the potential concerns
of unjustified sum scoring and to encourage researchers to be
more transparent when describing how scores from multiple-
item scales are created and used in empirical studies.

Putting sum scores into context

Whether sum scores are sufficient depends on context and
upon the stakes involved. If a clinician is using a scale like
the Beck’s Depression Inventory during an initial client inter-
view, then a sum score of item responses could be adequate as
a rough approximation of depression severity to aide in shap-
ing the rest of the session and to outline a therapy program. On
the other hand, researchers using the same scale to investigate
an intricate ontology of depression would unlikely be satisfied
with such an approximation and would want scores to be as
precise as possible.

This aligns with the notion of intuitive test theory from
Braun and Mislevy (2005). Their idea extends from diSessa
(1983), who discusses the concept of phenomenological
primitives using physics as an example. Most people have
a general idea about how physics work in everyday life (e.g.,
objects fall when dropped, springy objects bounce).
However, advanced physics applications in fields like engi-
neering require rigor and precision. So, phenomenological
primitives may be sufficient for effectively building a bird-
house, but more rigorous understanding is needed to effec-
tively build a bridge.

Braun and Mislevy (2005) apply the same principle to psy-
chometrics — rough approximations from tests (e.g., sum
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scores, face validity) can be useful for broad purposes, but
advanced applications of psychometrics require more preci-
sion. They describe how psychometric phenomenological
primitives (like sum scoring, p. 494) are stopping points for
non-experts but that rigorous applications of psychometrics
must delve deeper to develop a full set of evidence necessary
for serious inquiries. So, phenomenological primitives like
sum scoring might be useful to determine who passed a class-
room quiz based on the previous night’s assigned reading but
advanced approaches are required to measure intricate psy-
chological constructs like depression or motivation for re-
search purposes.

In the following sections, we build an argument for why
sum scores are often too imprecise for use in rigorous research
applications and explore sum scores in the context of broader
psychometric models that can be used to evaluate the tenabil-
ity of sum scoring.

Sum scoring as a parallel factor model

Structural equation modeling is considered a unifying statisti-
cal framework and an umbrella term under which other statis-
tical methods fall (Bollen, 1989). For instance, classical
methods like 7 tests, ANOVA, or regression can all be repre-
sented as a structural equation model (e.g., Bagozzi & Yi,
1989; Graham, 2008). Similarly, structural equation modeling
can serve as a unifying framework for methods used to score
multiple-item scales, subsuming both sum scoring and factor
models. This section shows how sum scoring can be repre-
sented within a structural equation modeling framework.
Consider six items from a cognitive ability assessment
from the classic Holzinger and Swineford (1939) data (N =
301), which are publicly available from the lavaan R package
(Rosseel, 2012) [all data, results, and analysis code are avail-
able on the Open Science Framework, https://osf.io/cahtb/].
The item scores range from 0 to 10; some of the original
items contain decimals, but we have rounded all items to the
nearest integer to limit sum scores to integer values. Table 1

Table 1.  Item descriptions and item descriptive statistics

Item  Description Mean Std. Dev. Min  Max

1 Paragraph comprehension 3.09 1.17 0 6
2 Sentence completion 4.46 1.33 1 7
3 Word definitions 220 1.13 0 6
4 Speeded addition 4.20 1.15 1 7
5 Speeded dot counting 5.56 1.03 3 10
6 Discrimination between 5.37 1.08 3 9

curved and straight letters

shows a brief description of each of these items along with
basic descriptive statistics.

To sum score these six items, the scores of each item would
simply be added together,

SumScore = Item1 + Item2 + Item 3 + Item 4 + Item 5

+ Item 6 (1)

Sum scores unit-weight each item (Wainer & Thissen,
1976), meaning that we could equivalently write Eq. (1) with
a “1” coefficient (or any other arbitrary value so long as it is
constant) in front of each item,

SumScore = 1 x Item1 + 1 X Item2 + 1 x Item 3 + 1

x Item4 4+ 1 x Item 5 + 1 x Item 6 (2)

Unit-weighting implies that each item contributes an equal
amount of information to the construct being measured.
Similarly, creating a mean score by summing items and divid-
ing by the number of items would be classified as unit-
weighting since all items are given equal weight (i.e., mean
scoring is a linear transformation of sum scores, so whenever
we mention “sum scores”, “mean score” could be substituted
without loss of generality).

Unit-weighting can be specified by a factor model in the
latent variable framework by constraining all standardized load-
ings to the same value. In psychometric terms, this is referred to
as a parallel model such that the unstandardized loadings and
error variances are assumed identical across items (Graham,
2006). In the factor model context, the true score of the con-
struct under investigation is modeled as a latent variable, which
explains each of the observed item scores.' This maps onto the
classical test theory definition such that an observed score is
equal to the true score plus error, often stylized succinctly as
X=T+ E. Essentially, the factor model is a multivariate regres-
sion where the observed item scores are the outcomes and the
latent true score is the predictor.

The path diagram for a parallel model is shown in Fig. 1:
the latent true score is represented by a circle at the top of the
diagram, the observed item scores are represented by squares,

! There is a deep literature on the differences between reflective latent vari-
ables and formative latent variables (e.g., Bollen, 2002; Bollen & Lennox,
1991; Borsboom, Mellenbergh, & van Heerden, 2003; Edwards & Bagozzi,
2000). The sum score formulation in Eq. (1) might be more closely viewed as

formative latent variable where the observed item scores are the predictors and

the latent variable is the outcome, rather than the reflective model shown in
Fig. 1 where the observed items scores are the outcome and the latent variable
is the predictor. We concede these nuances but note that the two different
specifications often lead to the same results, practically (e.g., Goldberg and
Digman, 1994; Fava & Velicer, 1992; Reise, Waller, & Comrey, 2000).
Furthermore, Widaman (2018) notes that principal components analysis (a
popular formative latent variable technique) is a data reduction technique,
not a model, and should not be applied when there is thought to be an theo-
retical construct underlying the items, which is often the intention when sum
scores are calculated.
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Fig. 1 Path diagram of a parallel factor model that unit weights items.
The error variance is estimated but constrained to be equal for all items.
Each of the loadings are constrained to 1 for all items. The latent variable

the latent errors are represented by circles at the bottom of the
diagram, variances are represented by double-head arrows,
and loadings are represented by single-headed arrows. The
1.0s on the factor loadings indicate that the loadings are
constrained to be equal and the 0 value on each of the error
variance indicate that these values are all constrained to be
equal. The loadings need not be constrained to 1.0 necessarily,
but they all need to be constrained to the same value. Not
shown are the estimated item intercepts for each item; estimat-
ing the intercept for each item results in a saturated mean
structure so that the item means are just equal to the descrip-
tive means of each item (assuming no missing data). The
mean of the latent true score is constrained to 0 as a result.
We fit this parallel model from Fig. 1 to these six cogni-
tive ability items in Mplus Version 8.2 with maximum like-
lihood estimation and saved the estimated parallel model
scores for each person (lavaan code is also provided for all
analyses on the OSF page for this paper).” We then com-
pared the parallel model scores to scores based on an un-
weighted sum of the item scores. The scatterplot with a fitted
regression line for this comparison is shown in Fig. 2.
Notably, the R® for the regression of the parallel model
scores on the sum scores is exactly 1.00 (meaning that the
correlation between the two is also 1.00). Depending on how

2 Factor scores in Mplus are calculated with the maximum a posteriori method,
for which the regression method is a special case when all the items are treated
as continuous. These factor scores are not interchangeable with the true score
values, but rather are predictions for the true score values. We cover factor
indeterminacy and different approaches to factor scoring in the discussion,
where we unpack these nuances in more detail.
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variance is estimated. Intercepts for each item are included but are not
shown. The latent variable intercept is constrained to 0

the model is parameterized, the scores from the parallel mod-
el with not be exactly equal to the sum scores; however,
there will necessarily be a perfect linear transformation from
parallel model scores to sum scores under any parameteriza-
tion of the parallel model. The Appendix shows the con-
straints necessary to yield scores from a latent variable model
that are identical to the sum scores. Given the complexity
required to achieve equivalence of the scale for sum scores
and factor scores, we proceed with the simpler approach that
yields a perfect linear transformation but not the exact sum
score, which remains sufficient for our arguments.

An alternative to the parallel model:
The congeneric model

Whereas sum scoring can be expressed (through a linear
transformation) as a parallel model, optimal weighting of
items with a congeneric model is a more general approach.
The basic idea of a congeneric model is that every item is
differentially related to the construct of interest and every
item has a unique error variance (Graham, 2006). So, if
Item 1 is more closely related to the construct being mea-
sured that Item 4, Item 1 receives a higher loading than
Item 4. Conceptually, this would be like having different
coefficients in front of each item in Eq. (2) so that each
item is allowed to correspond more strongly or more weak-
ly to the construct of interest. In the factor model, this
would mean that the each loading could be estimated as a
different value (i.e., the weights need not be known a
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Fig. 2 lJittered scatter plot of sum scores with parallel model scores from
the model in Fig. 1 with a fitted regression line. N =301

priori) and that each error variance would be uniquely es-
timated as well (i.e., the latent variable accounts for a dif-
ferent amount of variance in each item).

Figure 3 shows the path diagram of a congeneric model
for the same data used in Fig. 1. The major difference is
that the loadings from the latent true score to each ob-
served item score are now uniquely estimated for each
item, as are the error variances for each item (noted by
the subscripts on the parameter labels represented by

Greek letters). In order to uniquely estimate the loadings
for each item, the variance of the latent true score is
constrained to a specific value (1.0 is a popular value to
give this latent variable a standardized metric).

We fit the congeneric model from Fig. 3 to the six
cognitive ability items in Mplus version 8.2 with max-
imum likelihood estimation and saved the estimated
congeneric model scores for each person. The standard-
ized loadings, unstandardized loadings, and error vari-
ances from this model are shown in Table 2. Of note
is that the standardized loadings are quite different
across the items in Table 2, suggesting that the latent
true score relates differently to each item and that it
would be inappropriate to constrain the model and
unit-weight the items.

Figure 4 shows the scatterplot and fitted regression line for
sum scores against the congenic model scores. Notably, the R
value is 0.76 and the two scoring methods are far from iden-
tical, unlike the relation between sum scores and parallel mod-
el scores shown in Fig. 2. This means that two people with an
identical sum score could have potentially different congener-
ic model scores because they reached their particular sum
score by endorsing different items. Because the congeneric
model weights items differently, each item contributes differ-
ently to the congeneric model score, which is not true for sum
scores. Congeneric model scores are considering not just zow
an individual responded to each item, but also for which items
these responses occur.
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Fig. 3 Path diagram of a congeneric factor model. The error variance is
uniquely estimated for each item, as are the loadings for each item. The
latent variable is given scale by constraining its variance to 1.0. If the
latent variable variance were of interest, scale could alternatively be

assigned by constraining one of the loadings to 1. Intercepts for each
item are included but are not shown. The latent variable intercept is
constrained to 0
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Table 2. Model estimates from congeneric model in Fig. 3
Item  Description Std. Unstd. Error
loading  loading  variance

1 Paragraph comprehension 0.82 0.96 0.44

2 Sentence completion 0.85 1.12 0.50

3 Word definitions 0.79 0.89 0.47

4 Speeded addition 0.17 0.20 1.28

5 Speeded dot counting 0.18 0.19 1.02

6 Discrimination between 0.26 0.28 0.11

curved and straight letters

Importance for psychometrics: Reliability
coefficients

Though the isomorphism between sum scores and parallel
model scores may seem little more than a statistical sleight
of hand, the equivalence can be important for judging psy-
chometric properties of multiple-item scales. Reliability is
the most frequently reported psychometric property in psy-
chology (e.g., Dima, 2018). By far, the most popular metric
for reliability is coefficient alpha (a.k.a. Cronbach’s alpha;
Hogan, Benjamin, & Brezinski, 2000). However, as meth-
odologists have noted (e.g., Dunn, Baguley, & Brunsden,
2014; Green & Yang, 2009; McNeish, 2018; Zinbarg,
Yovel, Rvelle, & McDonald, 2006), coefficient alpha is
appropriate for unit-weighted scales but was not intended
for optimally weighted scales.

When scales are optimally weighted, different measures of
reliability tend to be more appropriate (Peters, 2014;
McNeish, 2018; Revelle & Zinbarg, 2009; Sijtsma, 2009)
such as coefficient H developed for scores that are optimally

2 R-Square=0.76

Factor Score

10 20 30 40
Sum Score (Jittered)

Fig. 4 lJittered scatter plot of sum scores with congeneric factor scores
from the model in Fig. 3 with a fitted regression line. N =301
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weighted (Hancock & Mueller, 2001). This pattern can be
seen with the Holzinger and Swineford (1939) cognitive abil-
ity data. If assuming that the scale is unit-weighted, the coef-
ficient alpha estimate of reliability is 0.72. If using a conge-
neric model and concluding that the scale should be optimal-
weighted, the estimate of reliability from coefficient H is 0.87.
Because the standardized loadings for the different items vary
considerably in this data (range .17 to .85), there is a sizeable
difference between the different reliability estimates given the
difference in their intended applications.

Granted, the difference in reliability coefficients tends to be
smaller than the discrepancy in this example because most
scales are restricted to items with loadings that are at least
moderate in magnitude (e.g., usually above .40, Matsunaga,
2010), meaning that the range of standardized loadings is
narrower than in this example (the wide range is indicative
of another issue, which we discuss shortly). Nonetheless,
Armor (1973) notes that reliability from optimally weighted
scores is guaranteed to be equal or greater than the reliability
of sum scores (p. 33) and reliability coefficients designed for
optimally weighted scales tend to be about 5—10% higher than
coefficient alpha for unit-weighted scales for scales common-
ly used in empirical studies (e.g., McNeish, 2018). Therefore,
sum scoring items ignores possible differences in the relation
between the latent true score and each item, which could lead
to researchers creating scores that are less reliable than could
be achieved if the scale were scored differently.

Importance for psychometrics: Classification

In some areas of psychology, cut-offs are applied to quantita-
tive scales to create meaningful, qualitatively distinct groups.
This is especially common in clinical psychology with scales
like Beck’s Depression Inventory (BDI), the PTSD Checklist
(PCL-5), the Hamilton Depression Rating Scale, and the
State-Trait Anxiety Inventory, among others. Each of these
scales can be scored using a sum score, which can subsequent-
ly be used to classify participants into clinical groups. For
example, depression is classified from the BDI as “Minimal”
for sum scores below 14, “Mild” for scores from 14 to 19,
“Moderate” for scores from 20 and 28, and “Severe” for
scores from 29 to 63 (Beck, Steer, & Brown, 1996).

Though we recognize the helpful role of sum scores in
clinical settings as a quick approximation, such a use is harder
to defend in rigorous research studies (e.g., when the scales
are used as outcome measures to determine the efficacy of
treatment). With clinical scales that include many items
(e.g., the BDI contains 21 items), the sum scoring assumption
that all items are equally related to the construct becomes less
plausible. If all items do not contribute equally to the con-
struct, then it matters which items are strongly endorsed, not
necessarily Zow many items were strongly endorsed as is the
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criterion considered with sum scores. For example, the item
about suicidality on the BDI might warrant more attention
than the item about fatigue, but this information is not cap-
tured with a sum scoring model that constrains all items to be
related equally to the construct.

Consider again the case of the Holzinger and Swineford
(1939) data. In this data, the loadings of the items are quite
different, so students with the same sum scores can end up
with different congeneric model scores depending on the re-
sponse pattern than yielded the sum score. For instance, con-
sider Student A whose six item responses for Item 1 through
Item 6 (respectively) were (5, 6, 4, 3, 5, 5) and Student B
whose respective responses were (2, 3, 1, 5, 10, 7). Figure 5
presents the data from Fig. 4 but highlights Student A and
Student B’s data. The sum score of both students is 28 but
the congeneric model scores are markedly different because
the loadings of Items 4 through 6 were low, indicating that
these items are weakly related to the cognitive ability con-
struct. Because Student B scored poorly on the most mean-
ingful items (Items 1 through 3), their congeneric model factor
score was estimated to be — 0.88 (the factor score is on a Z-
scale given that the factor variance is constrained to 1, so a —
0.88 score is well below average). Conversely, the Student A’s
congeneric model factor score was estimated to be 1.43 (a
score that is well above average) given that they were near
the sample maximum score for the first three items.

Even though sum scores would consider these students to
have the same cognitive ability, the congeneric model factor
scores indicate that their cognitive ability is quite disparate.
The congeneric factor model was parameterized such that the
factor scores were from a standard normal distribution, mean-
ing a sum score of 28 covers about 74% of the distribution of
congeneric scores (the area between a Z-score of —.88 and a Z-
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Fig. 5 Data from Fig. 4 highlighting two students who have the same
sum score (28) but who have very different factor scores (1.43 for Student
A, —0.88 for Student B)

score of 1.43), an expansive range showing the potential im-
precision of unit-weighting when it is inappropriate.

As a secondary issue, also recall from Table 1 that the
range of the six items is also not equal across items as
Items 4 through 6 have higher minimum and maximum
values than Items 1 through 3. When items have different
ranges or standard deviations, there are additional implica-
tions to sum scoring in that the resulting scores effectively
overweight scores with large ranges or large standard de-
viations. This can be seen directly in this example as
Student B achieved the same sum score as Student A pri-
marily by achieving high scores on items with larger max-
imums, an issue that is not present when factor scoring. An
example of the issue of different item ranges can be found
in the popular the Cattell Culture Fair intelligence test
(Cattell, 1973) which is commonly scored by taking a
sum of different subscales (e.g., Brydges et al., 2012), each
of which have a different number of questions and thus
different ranges. The result is that the overall sum score
inadvertently overweights particular subscales in the over-
all score.

Importantly, the large discrepancy in classification in Fig. 5
occurred from factor scores and sum scores that have a
Pearson correlation of 0.87. Though a correlation of this mag-
nitude would be seen as evidence of essential equality in em-
pirical variables, competing statistical methods need to have
correlations exceedingly close to 1 in order to yield results
without notable discrepancies in the estimated quantities. If
sum scores and factor scores are correlated at .87, about 1
— .87 =24.3% of the variability in scores differs between
sum scoring and factor scoring. This results in large variability
within each sum score seen in Fig. 5. Even with a correlation
of .95 between sum scores and factor scores, 1 —.95%>=9.8%
of the variability is attributable to extraneous factors. Though
sum scoring is often justified by noting high correlations with
factor scores, the variability of factor scores within a sum
score would remain notable until the correlation exceeds about
0.99. We return to this idea later on in this paper.

Importance for psychometrics: Validity via
internal structure

When multiple items are summed to form a single score, it is
difficult and therefore uncommon to report on the internal
structure of the scale (Crutzen & Peters, 2017). However, as
mentioned earlier, sum scores are a perfect linear transforma-
tion of factor scores from a parallel model. By representing
sum scoring through a parallel model in a latent variable
framework, researchers can more easily obtain and present
evidence from fit measures developed in this framework in
order to determine whether unit-weighting is reasonable.
Though arguments continue in the statistical literature about
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the best way to assess fit of latent variables models (e.g.,
Barrett, 2007; Millsap, 2007; Mulaik, 2007), popular options
include fit statistics (e.g., the Ty statistic; a.k.a. the X test) or
approximate goodness of fit indices (e.g., SRMR, RMSEA, or
CFI).

For the parallel model fit to the Holzinger and Swineford
(1939) data in Fig. 1, model fit is quite poor by essentially any
metric.

1. The CFIvalue is 0.45 whereas values at or above 0.95 are
considered to indicate good fit (e.g., Hu & Bentler, 1999).

2. The SRMR is 0.24 which does not compare favorably to
suggested cut-off of 0.08 or lower.

3. The RMSEA value is 0.23 (90% CI1=[0.21, 0.25]), which
similarly exceeds the recommendation for good fit of 0.06
or lower.

4. The maximum likelihood test statistic (7 ) is also sig-
nificant, x*(19)=5361.86, p<.001 which suggests that
the model-implied structures differ from structures obtain-
ed from the observed data.

Taken together, these tests of model fit clearly show that the
parallel model with constraints to yield a unit-weighted score
is not supported empirically. This would call the appropriate-
ness of sum scoring for this data into question. Next, we test
the fit of the congeneric model from Fig. 3. The fit of this
model is not great either — CFI = 0.81, SRMR = 0.11,
RMSEA = 0.20 [90% CI = (0.17, 0.23)], andx*(9) = 115.37,

p<.001. Although the fit improved, the values are still not in
the acceptable range for any of the measures here.

Seeing the poor fit of the one-factor congeneric model and
the disparate loadings in Table 2, it seems like there may but
multiple subscales present. When inspecting the items, it ap-
pears that the first three items are more related to verbal skills
whereas the second set of three items are more related to
speeded tasks. Therefore, we fit a two-factor model where
Items 1 through 3 load on one factor and Items 4 through 6
load on a second factor, with the factors being allowed to
covary. The path diagram with estimated standardized load-
ings and the estimated factor correlation is shown in Fig. 6.
The fit of this model is much improved — CFI = 0.99, SRMR =
0.03, RMSEA = 0.05 [90% CI = (0.00, 0.10)], andx*(8) =
14.74, p=.07, providing empirical support for the internal
structure of the scale being two factors.

This example shows a benefit of considering scales in the
latent variable model framework: by recognizing that sum
scores can be represented by a unit-weighting parallel factor
model, we performed a test of dimensionality with the factor
model and evaluated the strength of the item loadings. In
doing so, the multidimensional structure of these items for
cognitive ability became apparent. The assumption of unidi-
mensionality is easy to overlook with sum scores, which is
especially true when researchers adopt the common “sum-
and-alpha” approach to scale development and scoring.
Flake et al. (2017) note that many researcher-developed scales
subscribe to this approach, only considering coefficient alpha
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Fig. 6 Path diagram of two-factor congeneric model with standardized factor loading estimates, estimated factor correlation, and standardized error
variances. Intercepts for each item are included but are not shown. The latent variable intercepts are constrained to 0 for each factor
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to assess reliability and relying on face validity for evidence
that the items are appropriate for measuring the construct of
interest. As seen in this data, reliability of the unidimensional
sum scores as measured through coefficient alpha was reason-
able at 0.72. A common misconception of coefficient alpha
(along with many other reliability coefficients) is that it pro-
vides information about unidimensionality of scales (Green,
Lissitz, & Muliak, 1977); however, the alpha estimate being in
the “reasonable” range provides no information about whether
these six items are measuring the same construct (Schmitt,
1996). To arrive at this information, the internal structure or
dimensionality of the scale must be inspected. So while re-
searchers may intuitively know that is it inappropriate to sum
items across different subscales, the common sum-and-alpha
approach overlooks internal structure and makes it difficult to
discern the boundaries of subscales or which items are reason-
able to sum. Specifying a parallel model in a latent variable
context facilitates rigorous inspection of aspects of validity in
addition to reliability.

Importance to psychometrics: Previously
validated scales

Scales that are widely used in practice are often accompa-
nied by a citation to a validation study providing evidence
for the internal structure and the reliability of the scale. In
many cases, these validation studies are performed using
some type of congeneric factor model. However, when
many of these validated scales are used in practice, scores
are derived by summing the items, despite the fact that
validation studies routinely fit congeneric models with dif-
ferent loadings for each of the items (see, e.g., Corbisiero,
Morstedt, Bitto, & Stieglitz, 2017; Moller, Apputhurai, &
Knowles (2019). Furthermore, psychological scales that
are scored using a sum score and did not undergo a thor-
ough psychometric evaluation before becoming main-
stream (such as the Hamilton Depression Rating Scale)
continue to receive widespread use despite poor psycho-
metric properties that would likely prohibit use of the scale
(Bagby, Ryder, Schuller, & Marshall, 2004).

Alluding to our previous point, the issue here is that
sum scoring can be represented by a factor model, but it is
not the same factor model that was used to validate the
scale. Validation studies provide evidence of the internal
structure under a congeneric model, but if the scoring
model then reverts to a sum score, the validation study
is no longer applicable as evidence. In this scenario, the
model used for validation (a congeneric model) and the
model used for scoring (a parallel model) are incongruent
and new evidence would be required to empirically vali-
date sum scoring. This practice is a sort of bait-and-switch
whereby a more complex model is cited for support but

then a different, simpler, and unvalidated model produces
scores. Evidence from models cannot be mixed and
matched: just like the R from one regression model can-
not support a different regression model, validity evidence
from a congeneric scoring model cannot be applied to
sum scoring.

As a quick example, we revisit two scales discussed earlier:
The Beck Depression Inventory (BDI) and the PTSD
Checklist (PCL-5). The BDI can be a high stakes assessment
since it is often used as an outcome metric in clinical depres-
sion trials (Santor, Gregus, & Welch, 2009). As mentioned
carlier, the BDI is scored using the sum of all items (per the
BDI manual; Beck, Steer, & Brown, 1996) and participants
are classified into qualitatively meaningful groups using cut
scores. The PCL-5 can be scored three ways: (a) by summing
all items, (b) by summing items within a cluster, or (c) by
counting the number of times items have been endorsed with-
in each cluster (Weathers, et al., 2013). There are different cut
scores associated with each scoring method.

The primary BDI validation paper (Beck, Steer, &
Carbin, 1988) has been cited 12,000+ times according to
Google Scholar and the primary PCL-5 validation paper
(Blevins, et al., 2015) has been cited 700+ times on
Google Scholar at the time of this writing. In these papers,
the BDI was validated as a two-factor congeneric model
while the PCL-5 was validated as either a four-factor or
six-factor congeneric model. Notably, neither of these val-
idated psychometric models align with the model that
corresponds to the recommended scoring methods; the
scales are scored using a completely different model
(i.e., summing across all items implies the use of a unidi-
mensional parallel model) compared to the model used for
validation (i.e., a multidimensional congeneric model). In
other words, in their current uses, the BDI and the PCL-5
have not demonstrated psychometric evidence of validity
based on the internal structure (at least, within their re-
spective top cited validation publications) despite many
empirical studies suggesting otherwise. Again, we are
not criticizing summing items in clinical settings where
speed matters and rough approximations can suffice, but
scoring models used in research studies that deviate so
markedly from the validation model used to support the
scale is difficult to justify.

Our intention is not to single out these two scales as sum
scoring is a common practice whose correspondence to highly
constrained latent variable models is not always appreciated.
However, as noted by Fried and Nesse (2015), creating unidi-
mensional sum scores for multi-dimensional constructs may ob-
fuscate findings in psychological research. When assessments
are scored differently, utilize cut scores, and do not align with the
validated model, it can be difficult to find meaningful, consistent
results across studies or to even be confident that the score
accurately reflects the construct it is purportedly measuring.
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Statistical justification for sum scores

To this point in the paper, we have mainly focused on short-
comings of sum scores or unit-weighting assumptions and
how they can lead to undesirable outcomes. However, there
are circumstances where sum scores are practically indistin-
guishable from factor scores and may be perfectly legitimate.
Consider the two-factor congeneric model from the Holzinger
and Swineford (1939) data presented earlier. We noted that the
scale far more plausibly represented two distinct constructs
(Verbal Cognition and Speeded Cognition) based on the mod-
el fit assessment from a factor model. Recall from Fig. 6 that
the standardized factor loadings were very close for the Verbal
Cognition factor (.83, .85, .79) and the standardized loadings
were reasonably close for the Speeded Cognition factor (.58,
.71, .56). This may indicate that assumption violations of the
parallel model may be minimal. Essentially, a congeneric
model with nearly equal standardized loadings may be reason-
ably approximated by a parallel model.

We fit a two-factor parallel model to these data in Mplus
8.2. The loadings for all items were constrained to 1.0 and the
error variances were constrained to be equal across all items
within each subscale but were uniquely estimated across sub-
scales. The latent true score variances were also uniquely es-
timated but factors were not allowed to covary in order to
retain isomorphism between the parallel model scores and
summing items within each subscale. If the covariance is in-
cluded, path tracing rules would allow the items on the Verbal
Cognition subscale to be connected to the items on the

Speeded Cognition subscale. However, subscale sum scores
would be calculated independently: the items from the Verbal
Cognition subscale would added independently of items on
the Speeded Cognition subscale, then items on Speeded
Cognition subscale would be added independently of items
on the Verbal Cognition subscale. Omitting the factor covari-
ance is required to maintain the property that factor scores are
a perfect linear transformation of scores. If a factor covariance
were included, to the extent that its magnitude deviates from 0,
the correlation between factor scores and sum scores will de-
viate from 1. The path diagram for this two-factor parallel
model is shown in Fig. 7.

First, Fig. 8 shows the correlation between the two-factor
parallel model scores and the sum scores. As shown above
and as expected, the parallel model yields scores that are a
perfect linear transformation of the sum scores and the cor-
relation is exactly 1.00. Second, we inspected the fit of the
parallel model: CFI = 0.93, SRMR = 0.14, RMSEA = 0.09
[90% CI = (0.06, 0.11)], andx*(17)=55.54, p<.01. The fit
of the model is not great, but might be interpreted to show
some marginal indications of good fit (e.g., a CFI above .90
is sometimes considered sufficient, the 90% CI of RMSEA
contains .06). A likelihood ratio test comparing the two-
factor parallel model to the two-factor congeneric model
from Fig. 6 shows that the congeneric model fits significant-
ly better, x*(9) =40.80, p <.01.

If the sum scores are compared to the factor scores from the
congeneric model, the R? values are quite high: 0.99 for the
Verbal Cognition factor and 0.96 for the Speeded Cognition
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Fig. 7 Path diagram of two-factor parallel model. The loadings are
constrained to 1 for all items, the error variances are unique across factors
but are constrained within factors. Factor variances are uniquely

@ Springer

estimated and there is no factor covariance. Intercepts for each item are
included but are not shown. The latent variable intercepts are constrained
to 0 for each factor
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Fig. 8 Jittered scatter plot of sum scores with parallel model factor scores from the model in Fig. 7, with a fitted regression line. Verbal Cognition is
shown in the left panel and Speeded Cognition is shown in the right panel. N =301

factor (keep in mind that there only three items per factor in
this example; the inclusion of additional items gives more
opportunity for loadings to vary across items). These relations
are plotted in Fig. 9. The extremely close standardized load-
ings for the Verbal Cognition subscale led to sum scores that
are almost identical to the congeneric scores. The standardized
loadings for the Speeded Cognition factor are more discrep-
ant, so the differences are easier to detect. Note that even at a
R? of .96 (derived from a correlation of .98), the range of
congeneric factor scores within each sum score remains about
half a standard deviation on the factor score scale, which could
be problematic in a high-stakes contexts.

When the standardized loadings are nearly identical for
items that load on the same factor, there will be less detectable
differences between sum scores and congeneric factor scores.
In general, the larger the differences are in the standardized
loadings are for items that load on the same factor, the larger
the differences will be between sum scores and congeneric
model factor scores (Wainer, 1976). It is worth noting that
enough psychometric work must be conducted to realize the
number of subscales and that one unidimensional sum score
across both subscales would muddy the interpretation of an
individual’s cognitive ability.

The difference between reliability of optimally weighted
and unit-weighted scores also is related to the differences in

R-Square=0.99

Verbal Cognition
Congeneric Factor Score
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W

Sum Score (Jittered)

the standardized loadings (Armor, 1973), so there is not much
difference in the reliability of the scale based on the scoring
method. Coefficient alpha calculated on the sum scores was
.86 for the Verbal Cognition factor and .64 for the Speeded
Cognition factor whereas Coefficient H was .87 for the Verbal
Cognition congeneric factor and .66 for the Speeded
Cognition congeneric factor, so a unit-weighted approach is
not adversely affecting the reliability of the scores. In this case,
one could construct an argument for sum scoring each sub-
scale (i.e., items on each factor) in this data if there is some
preferable interpretation based upon sum scores, understand-
ing possible risks associated with cut-scores if used in high-
stakes contexts (i.e., incorrectly classifying persons or evalu-
ating treatment efficacy in clinical studies). To be clear, we
would contend that the congeneric model would still be pre-
ferred even in this situation; however, we are noting that evi-
dence of this type would be needed to make reasonable claims
about the suitability of sum scores.

Using scores in subsequent analyses
When using scores in subsequent analysis like regression, path
analysis, or ANOVA; there are two general approaches that

can be implemented: multistage and simultaneous. Multistage

.
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Fig.9 littered scatter plot of sum scores with congeneric factor scores from the model in Fig. 6, with a fitted regression line. Verbal Cognition is shown in

the left panel and Speeded Cognition is shown in the right panel. N =301
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factor score regression has historically been more common
(e.g., Bollen & Lennox, 1991; Lu & Thomas, 2008;
Skrondal & Laake, 2001) and continues to be recommended
as a practical approach (e.g., Hayes & Usami, 2020a; Hoshino
& Bentler, 2013). In factor score regression, factor scores from
ameasurement model are created for each construct separately
and saved in one step. In a second step, the factor scores are
then treated as observed data in a subsequent statistical anal-
ysis (e.g., regression, ANOVA, path analysis).

With a multistage approach, there are multiple methods by
which factor scores can be computed in the first step due to
factor indeterminacy, which essentially posits that there are
many equally plausible sets of factor scores that are consistent
with a particular set of parameters (e.g., Brown, 2006; Grice,
2001; Steiger & Schonemann, 1978). In previous examples in
this paper, we use the maximum a posteriori method as im-
plemented by Mplus (MAP; also known as the regression
method when the items are continuous; Thomson, 1934;
Thurstone, 1935). With the MAP method, the covariance ma-
trix of the factor scores will not be identical to the covariance
matrix of the latent variables (Croon, 2002), so corrections are
needed to accurately estimate parameters and model fit
(Devlieger & Rosseel, 2017; Devlieger, Talloen, & Rosseel,
2019). Alternatively, Skrondal and Laake (2001) show that
MAP factor scores are better when the latent variable is
intended as a predictor, but that the Bartlett scoring method
(Bartlett, 1937; Thomson, 1938) is preferable when the latent
variable is intended as an outcome and suggest that different
scoring methods be used for different factors, depending on
their role in the analysis in the second stage. In lavaan, there is
an option that users can specify to select their factor scoring
method and the experimental fsr function can apply Croon’s
correction to factor scores. In Mplus, factor scores are current-
ly saved with MAP scoring when items are treated as
continuous.

The second approach is a simultaneous approach. Factor
indeterminacy is only problematic when tangible scores for
each person need to be computed. The issue of different factor
scoring methods can be avoided if the measurement model for
the multiple-item scale is directly embedded into a larger mod-
el with a structural equation model to estimate all aspects of
the model simultaneously (Devlieger, Mayer, & Rosseel,
2016). So rather than specifying a measurement model for
the latent construct, saving scores, and using those scores in
a subsequent analysis; the measurement model and the subse-
quent statistical model are directly modeled within a single
structural equation model. In this way, the latent true score
itself is used in the analysis rather than a tangible factor score
(Brown, 2006), which tends to produce the least biased esti-
mates in ideal situations (e.g., large sample sizes, no model
misspecifications) because there is no error or truncated vari-
ability that can arise when tangible factor scores are computed
(Devleiger & Rosseel, 2017).
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Though the simultaneous approach holds a major ad-
vantage in that it is purer by virtue of working directly
with the true latent scores, there are two potential disad-
vantages of such an approach. First, the strength that the
measurement model and statistical model are combined
together is double-edged sword that also serves as a
weakness — any misspecifications in one part of the mod-
el permeates into the other (Hoshino & Bentler, 2013).
So, if there is a misspecification in the subsequent statis-
tical model, it will affect the measurement model and
how items are scored. Second, a simultaneous approach
can make specification tricky for some models and lead
to interpretational confounding (Bollen, 2007; Burt,
1976). For instance, if the latent variable is used as a
predictor of an observed variable, the outcome is theoret-
ically indistinguishable from the indictors of the latent
variable. An example of interpretational confounding is
shown in Fig. 10. Imagine that the Verbal Cognition sub-
scale from the Holzinger and Swineford (1939) data are
used to predict an observed variable like number of
words recalled from a list. The left panel shows the path
diagram as if Words Recalled were an outcome variable
and the right panel shows the path diagram as if Words
Recalled were an indicator of the Verbal Cognition factor.
Though the models have different intended interpreta-
tions, model equations and standard estimation proce-
dures would not distinguish between them. Levy (2017)
provides a comprehensive introduction to issues with in-
terpretational confounding and a comparison of possible
estimation remedies.

Though multistage approaches contain more sources of error
because they pass scores across stages, Devlieger et al. (2016)
have shown that the performance of a multistage approach with
corrections to parameter estimates and standard errors very
closely approximate the performance of the simultaneous ap-
proach. Multistage approaches possess the added benefit that
the measurement model is estimated in a separate first stage,
meaning that misspecifications do not permeate across different
parts of the model (Hayes & Usami, 2020b) and that estimation
is more stable with smaller sample sizes (Rosseel, 2020). The
multistage approach has recently been extended to fit measures
(Devlieger et al., 2019), path analysis (Devlieger & Rosseel,
2017), and multilevel settings (Devlieger & Rosseel, 2019),
giving advantages to multistage approaches broader coverage
and narrowing the gap between their performance and the per-
formance of the simultaneous approach.

For this reason, Hayes and Usami (2020a) note that the
pendulum of best practice has recently swung back to-
wards favoring multistage approaches (p. 6), but method-
ological debates about how to best use scores from latent
variables in subsequent analyses. The important point here
is that although factor scores are proxies of the true latent
score, sum scores are a naive proxy for factor scores from
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Fig. 10 Illustration of interpretation confounding when using a
simultaneous approach. The path diagram on the left shows Words
Recalled intended as outcome, the path diagram on the right shows

heavily constrained models — they are a proxy of a proxy.
So, although there are still lingering questions about the
best approach for using scores in subsequent analyses (i.ce.,
a multistage approach with corrections vs. a simultaneous
approach), the answer to these questions will definitively
not be “sum scores”.

The next section provides an example to demonstrate
how the choice of scoring method can affect conclusions
when the point of obtaining scores is to use them in a
subsequent analysis.

How scoring approaches can change
conclusions

The Holzinger and Swineford (1939) data contained students
who attended two different schools: 145 students attend the
Grant-White school (48%) and 156 students attended the
Pasteur school (52%). Imagine that the motivation for scoring
the six cognitive items was to assess the question that there
were differences in scores between these schools. The ultimate
model of interest is a general linear model: the scale score(s)
are the outcome and School Membership is the grouping var-
iable (i.e., a two-group test).

We will treat the scoring of the six cognitive items in
four different ways to represent different levels of rigor
in order to show how the conclusions could change.
Because some methods yield multiple subscales, we es-
timate models with a structural equation model using
robust maximum likelihood estimation to fit both out-
comes into a single multivariate regression model. The
four methods we use are listed below. The factor score
regression method with Croon’s correction in Method 3
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Words Recalled intended as an indicator variable. These two models
are mathematically indistinguishable despite theoretical differences
between them

has a dedicated function in lavaan and is easier to per-
form than in Mplus, so we perform all analyses in lavaan
for consistency.

1. First, we treat the scale as if it were a researcher-created
scale by which the common “alpha-and-sum” approach
was applied and for which evidence of internal structure is
rarely assessed (e.g., Flake et al., 2017). As noted earlier,
coefficient alpha of all six cognition items together is 0.72
which is above the traditional 0.70 cut-off and the items
are consequently summed to create a single score. This
single score is used as the outcome in a univariate general
linear model with School Membership as the predictor.

2. Second, the next level of rigor is to perform basic psycho-
metric modeling to assess the internal structure but then
sum score each subscale. As noted earlier, the two-factor
model in Fig. 6 fit well and contained a Verbal Cognition
subscale and a Speeded Cognition subscale. Sum scores
are created for each subscale and are then used as ob-
served outcomes in a multivariate general linear model
with School Membership as a predictor.

3. Third, we use the same two-factor model from Fig. 6 but
apply a multistage factor score regression. In the first
stage, we Bartlett score the subscales because the latent
variables are the outcome of interest, in accordance with
recommendations from Skrondal and Laake (2001).
Then, we apply Croon’s correction to these factor scores
and use the factor scores as observed outcomes in a mul-
tivariate general linear model with School Membership as
a predictor in the second-stage model.

4. Fourth, we use a simultaneous approach to fit the
multivariate general linear with School Membership
as a predictor and the latent variables from the two-
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factor model in Fig. 6 directly as the outcome vari-
able such that no tangible scores are produced. This
combines the measurement model and the general
linear model into one large model.

Results

Here, we report the coefficients for the School Membership
difference across methods. Because sum scores and factor
scores are on different scales, we report both the unstandard-
ized coefficient (B) and Cohen’s d for each effect. The first
method of summing all six items yields a significant effect of
School Membership (B=.99, d=.22, p=.05 ) with the con-
clusion that Pasteur scored higher than Grant-White (Pasteur
is coded as 1 in the data, so positive coefficients indicate
better performance in Pasteur). With the second method of
sum scoring each subscale, the result is that Pasteur scored
higher on the Verbal Cognition subscale (B=1.68, d=.52,
p<.01) but Grant-White scored higher on the Speeded
Cognition subscale (B= —.69, d= —.28, p=.02). The third
method used Croon-corrected Bartlett factor scores in a mul-
tistage factor score regression and yielded the result that
Pasteur scored higher on Verbal Cognition (B =.54, d=.56,
p<.01) and that there was no difference on Speeded
Cognition (B= —.17, d= —.26, p=.07). Lastly, the fourth
method is the simultaneous approach that directly uses the
latent variable in the model and yielded the same result as
the third method such that Pasteur scored higher on Verbal
Cognition (B=.54, d=.56, p<.01) and that there was no
significant difference on Speeded Cognition (B= —.25,
=—.34, p=.09).

Notably, sum scoring gives different conclusions compared
to more rigorous methods that have been shown in the meth-
odological literature to provide more accurate estimates. Sum
scoring leads to a conclusion that Pasteur scores higher in
general or that there is a dichotomy whereby Pasteur is signif-
icantly higher on Verbal Cognition and Grant-White is signif-
icantly higher on Speeded Cognition. Factor score regression
and the simultaneous approach both indicate that Pasteur is
higher on Verbal Cognition and there is no difference on
Speeded Cognition. Essentially, the test result changes both
in direction and significance depending on how the scale is
scored. Furthermore, note that these different conclusions re-
garding Speeded Cognition between sum scores and more
rigorous approaches was observed even though the correlation
between Speeded Cognition sum scores and Bartlett factor
scores was 0.985. At this correlation, the R> between sum
scores and factor scores is 0.970, but the 3% of the variability
between different scoring methods that is attributable to
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extraneous factors is sufficient to change the conclusion be-
tween scoring methods.

Moreover, even with a simple model that boils down to a
multivariate two-group test, the ultimate inferential conclu-
sions could change strictly based on the scoring method.
The statistical models that are used in empirical studies are
often vastly more complex, so results from multilevel models,
growth models, or multiple regression based on sum scores
may be more adversely affected by imprecision when scoring
of multiple scales is necessary. Statistical methodology con-
tinues to develop at a rapid pace with methods like network
models, growth mixture models, and machine learning
becoming more mainstream. However, despite the exciting
new research questions that can be addressed with these
methods, fidelity of conclusions from these methods
remains restricted by the quality of the scales and the
variables analyzed from them. As one recent example,
Jacobucci and Grimm (2020) note how the effectiveness of
machine learning algorithms is vastly reduced in the face of
imprecise measurement. This work aligns with our thesis —
regardless of model complexity, the variable remains the
foundational unit to which these methods are applied and
complex methodology cannot solve fundamental issues asso-
ciated with imprecise measures that researchers often over-
look or ignore.

Discussion and limitations

Given the nature of the topics under investigation in psy-
chology, many research studies rely on multiple-item
scales to tap constructs that are not directly measurable
with physical instruments. These constructs are typically
complex, contextual, and multi-dimensional, rendering
psychological measurement inherently more challenging
than physical measurement (Michell, 2012). Variables
created from scoring these scales often play a central role
in subsequent analyses, either as predictor variables or as
the outcome of interest. However, when justification for
the scoring of scales is relegated to secondary status as is
often the case when sum scores are created, it can lead to
hidden ambiguity in research conclusions about the in-
trinsic meaning represented by the variable.

The scores from multiple-item scales are treated serious-
ly by producers and consumers of research but the process
by which those scores are obtained often is not. There are
countless modeling decisions that one can make that lead to
the creation of these scores — are the items treated as con-
tinuous or discrete? Do any response categories need to be
collapsed or reverse coded? Are there subscales present in
the scale? Whenever responses from multiple items are
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combined by some method, there is a model corresponding
to that method. Although summing item responses may
seem like a simple arithmetic operation, it is a simple linear
transformation of a heavily constrained parallel factor mod-
el. Treating the sum scoring as a psychometric model rather
than an arithmetic calculation obliges researchers to engage
with model constraints they are imposing (perhaps unknow-
ingly) and test the assumptions associated with such
constraints.

Our point is that any method advanced by researchers
for scoring scales needs evidence to support its use, and
considering sum scores as a factor model demands such
evidence. Neither the physical nor social sciences would
endorse conclusions without evidence, so why does psy-
chology so readily accept conclusions derived from anal-
yses based on sum scores created without any accompa-
nying evidence? Such v-hacking and v-ignorance (where
v is shorthand for validity; Hussey & Hughes, 2019) may
be contributors of replication and measurement issues in
psychology; if scales are scored using untested psycho-
metric models with unknown or questionable properties,
it is difficult to replicate findings or infer meaning.

Our main point is that any scoring method corresponds
to a model and any choice should be accompanied by ev-
idence. Sum scoring is not a particularly complex model,
but it is still a model nonetheless and it is possible that its
assumptions could be satisfied. Several types of evidence
need to be reported to support that decision: Is there suffi-
cient unidimensionality of the scale or of each subscale? Is
the internal structure supported? Are loadings sufficiently
similar such that each of the items contribute about equally
to what is being measured? Are there changes in reliability
of the scores with different scoring methods? Perhaps there
are some instances where sum scores are justified; the
problem permeating throughout psychology is employing
methods without any justification. We implore researchers
to take psychometrics as seriously as other statistical pro-
cedures and provide justification for whichever scoring
method they choose. After all, variables are the founda-
tional unit of any statistical analyses: if the variables are
not trustworthy or do not represent the constructs as
intended, any results are dead-on-arrival as other modeling
choices are ill-equipped to overcome deficiencies in the
meaning of the variables.

Limitations
Model fit assessment Cut-offs for model fit measures for

factor models are imprecise and are used pragmatically
rather than dogmatically. The commonly referenced Hu

and Bentler (1999) cut-offs are based on empirical simula-
tion rather than analytic derivation and therefore are limit-
ed by the conditions included in the simulation design.
Several studies have noted that the cut-offs for many pop-
ular indices — including CFI, RMSEA, and SRMR that we
use in this paper — vary with the size of the loadings
(Hancock & Mueller, 2011; McNeish, An, & Hancock,
2018), size of error variances (Heene, Hilbert, Draxler,
Ziegler, & Buhner, 2011), model type (Fan & Sivo,
2005), model size (Shi, Lee, & Terry, 2018), degree of
misspecification (Marsh, Hau, & Wen, 2004), and missing
data percentage (Fitzgerald, Estabrook, Martin,
Brandmaier, & von Oertzen, 2018). We openly acknowl-
edge the lack of firm recommendations on how to adjudi-
cate what constitutes a “good” fitting model, but ultimately
believe that imprecise metrics are an improvement over no
metrics at all.

Multiple types of validity In our examples, we focus upon
one common type of evidence of validity evidence (i.e.,
internal structure) and one quantitative method that could
be used to provide such evidence (i.e., factor analysis).
The Standards for Educational and Psychological
Assessment name five types of evidence, none of which
are inherently more important than the other. There is an
extensive literature on the theory of measurement itself;
for example, Maul (2017) demonstrates that good fitting
models are not inherently evidence of good theory;
Borsboom, Mellenbergh, & van Heerden (2004) discredit
the nomological network and argue that validity is simply
the causal relationship between variation in the attribute
and variation in the response; while Michell (2012) argues
that measurement is not possible in the social sciences as
social scientists have not established evidence of
quantitivity in the attributes they claim to measure. For
this reason, we focused on classic, widely reported quan-
titative methods such as coefficient alpha and factor anal-
ysis. Variables are the foundation of any statistical analy-
sis, and methodological principles devised to combat data
analytic issues are irrelevant if the foundational unit to
which they are applied is questionably reflective of the
intended construct. We offer this paper as a starting point
to hopefully bridge readers from reflexively sum scoring
to the more nuanced literature on scales and psychological
measurement.

Take-home points

1. Sum scoring falls under the same umbrella as factor anal-
ysis, though it is rarely presented as such. Researchers
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need to be more diligent in providing support for sum
scores (or an alternative scoring method), as they would
with any other type of statistical model.

2. Considering sum scores as a latent variable model encour-
ages researchers to evaluate the psychometric properties
of their scale.

3. Ifusing a previously validated scale, researchers need to ver-
ify how the scale was validated (e.g., the dimensionality of the
scale). If a congeneric model was used for validation, sum
scoring will apply a different unvalidated scoring model.

4. When using scores in subsequent analyses, the choice of
scoring method can affect the conclusions of the analysis,
even when the correlation between sum scores and factor
scores is very high.

5. There are multiple methods to calculate factor scores:
Bartlett scores are suggested when the score will be used
as an outcome, MAP scores are suggested when the score
will be used as a predictor. If saving factor scores for use
in a subsequent model, researchers should be aware of
possible corrections such as Croon’s correction needed
to yield unbiased estimates.

6. Researchers can avoid decisions about different factor
scoring by using a simultaneous approach that imbeds a
measurement model within a broader structural equation
model. This approach is considered more pure than mul-
tistage approaches, but it can result in estimation difficul-
ties, especially with large models or small samples. In
these cases, multistage approaches show similar perfor-
mance with reduced estimation difficulties. Nonetheless,
the distinction between multistage and simultaneous ap-
proaches is much finer than the distinction between either
method and sum scoring.
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Appendix

Specifying a model to obtain factor scores that exactly
equal sum scores

In the main text, we show how scores from a parallel
model are perfectly related to the sum scores. However,
to make this equivalence more concrete, some readers
may wish to know how to specify the model so that
latent variable scores are exactly equal to the sum
scores. Rose, Wagner, Mayer, and Nagengast (2019) for-
mally showed how this can be accomplished and we
demonstrate their method with the example six-item
cognitive ability score.

In general, one variable is arbitrarily selected as a referent
item. The loading from the latent variable to the referent item
is then fixed to 1. The referent indicator is then regressed on all
other items with all coefficients constrained to — 1. All non-
referent indicators freely covary with each other and freely
covary with the latent variable. The means of all non-
referent items are also estimated, as is the variance of the latent
variable. Figure 11 shows the path diagram for the example
six item cognitive ability scale using item 6 as the referent
item; the freely estimated covariances between each non-
referent item and the latent variable are not shown in order
to keep the path diagram as interpretable as possible.

We fit this model in Mplus version 8.2 with maximum
likelihood estimation and saved the factor scores from the
model. These scores are plotted against the sum scores in
Fig. 12, showing that two scores remain a perfect linear trans-
formation but now the transformation is an identify function
such that the sum scores are equal to one times the factor
scores and vice versa.

If using this model, Rose et al. (2019) note that fit
indices cannot be calculated in traditional ways because
of the non-nestedness of the standard null model in most
software and the fact that variances and covariance of
scale items are unrestricted. Rose et al. (2019) discuss
proper calculation of fit as well as issues related to miss-
ing data.
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Item

Fig. 11 Path diagram of model to yield factor scores that perfectly correspond to sum scores. Not shown are the freely estimated covariances between all

non-referent items on the left and the latent variable on the right
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Fig. 12 Plot of scores from model in Fig. 11 with sum scores. The scores
remain a perfect linear transformation and the transformation is now an
identity function such that the two scores are equal
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